The Reaction of Allene with Palladium(II) Acetate

Tadashi Okamoto, Yasumasa Sakakibara* and Sango Kunichika

Institute for Chemical Research, Kyoto University, Gokasho, Uji

* Chemical Laboratory of Textile Fibers, Kyoto University of Industrial Arts and Textile Fibers, Kyoto

(Received March 17, 1970)

A recent note on the reaction of allene with π -allylpalladium(II) acetylacetonate to give 2,2'-bi- π -allyl complex of palladium¹⁾ prompts us to report another bridged π -allyl complex obtained from allene and palladium acetate.

Palladium(II) acetate and allene were stirred in benzene at room temperature overnight; subsequent separation with a silica-gel column gave a yellow crystal, di- μ -acetato-[2,2'-(1-methyleneethylene)bis- π -allyl]dipalladium (I), in about a 20% yield. The structure of I was established by chemical and spectroscopic methods. Found: C, 34.63; H, 4.10%; mol wt (benzene, 37°C), 466. Calcd for (C₃H₄)₃Pd₂(CH₃COO)₂: C, 34.58; H, 4.11%; mol wt, 451. The hydrogenation of I gave 2,3,5-trimethylhexane and partially-hydrogenated products, 2,3,5-trimethyl-2-hexene and 2,4,5-trimethyl-2-hexene, which were determined by a study of

the mass and NMR spectra. The NMR spectrum of I shows singlet absorptions at 5.67 (1H, H⁷), 5.21 (1H, H⁸), 3.95 (2H, H¹⁰ and H¹²), 3.77 (2H, H² and H⁴), 3.26 (2H, H⁵ and H⁶), 2.90 (2H, H¹ and H³), 2.80 (2H, H⁹ and H¹¹), and 2.05 ppm [(6H), acetoxy protons] at 100°C in acetic acid-d₄, with TMS used as the internal reference. At -28°C in deuterochloroform, the absorptions at 3.95, 3.26, and 2.90 ppm each separated into two peaks (Fig. 1). The couplings of the AB-type by H⁵ and H⁶ protons at the low temperature are not clear because of the disturbance by neighboring absorptions. The IR spectrum of I shows two broad absorptions, at 1570 and 1410 cm⁻¹, which

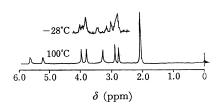


Fig. 1. NMR spectra of I.

can be assigned to the carboxylate ion. Acetate ligands were replaced, resulting in an insoluble complex, when I was treated with an aqueous sodium chloride solution.

An iron complex of a ligand with the same carbon skeleton was also obtained by Otsuka $et~al.^{2}$) from hexacarbonyl 2,2'-bi- π -allyldiiron and allene. A similar route may be supposed for the formation of complex I, but no absorption due to 2,2'-bi- π -allylpalladium acetate was observed on the NMR spectrum of our reaction mixture.

When an aqueous sodium chloride solution was added to the reaction mixture, di-μ-chloro-bis-[2-(1-(acetoxymethyl)vinyl)-π-allyl]dipalladium (II) and di-μ-chloro-bis(2-acetoxy-π-allyl)dipalladium (III) were isolated from the solution in a total yield of 52%. The NMR spectrum of II shows singlet absorptions at 5.68 (1H, =CH₂), 5.46 (1H, =CH₂), 4.86 (2H, H³), 4.18 (2H, H⁴), 2.90 (2H, H⁵) and 2.20 ppm (3H, acetoxy protons) in deutero-chloroform at room temperature, with TMS used as the internal reference.

Although the mechanisms of these reactions are not yet clear, the newly-obtained complexes are the first examples of a stable complex obtained from palladium acetate.

¹⁾ R. P. Hughes and J. Powell, J. Organometal. Chem., 20, p. 17 (1969).

²⁾ S. Otsuka, A. Nakamura and K. Tani, Symposium on Organometallic Chemistry, Osaka, Japan, September, 1969, Abstract 25.